Generalizability vs. Robustness: Adversarial Examples for Medical Imaging

نویسندگان

  • Magdalini Paschali
  • Sailesh Conjeti
  • Fernando Navarro
  • Nassir Navab
چکیده

In this paper, for the first time, we propose an evaluation method for deep learning models that assesses the performance of a model not only in an unseen test scenario, but also in extreme cases of noise, outliers and ambiguous input data. To this end, we utilize adversarial examples, images that fool machine learning models, while looking imperceptibly different from original data, as a measure to evaluate the robustness of a variety of medical imaging models. Through extensive experiments on skin lesion classification and whole brain segmentation with state-of-the-art networks such as Inception and UNet, we show that models that achieve comparable performance regarding generalizability may have significant variations in their perception of the underlying data manifold, leading to an extensive performance gap in their robustness.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Show-and-Fool: Crafting Adversarial Examples for Neural Image Captioning

Modern neural image captioning systems typically adopt the encoder-decoder framework consisting of two principal components: a convolutional neural network (CNN) for image feature extraction and a recurrent neural network (RNN) for caption generation. Inspired by the robustness analysis of CNN-based image classifiers to adversarial perturbations, we propose Show-and-Fool, a novel algorithm for ...

متن کامل

Towards Deep Neural Network Architectures Robust to Adversarial Examples

Recent work has shown deep neural networks (DNNs) to be highly susceptible to well-designed, small perturbations at the input layer, or so-called adversarial examples. Taking images as an example, such distortions are often imperceptible, but can result in 100% mis-classification for a state of the art DNN. We study the structure of adversarial examples and explore network topology, pre-process...

متن کامل

Deep Adversarial Robustness

Deep learning has recently contributed to learning state-of-the-art representations in service of various image recognition tasks. Deep learning uses cascades of many layers of nonlinear processing units for feature extraction and transformation. Recently, researchers have shown that deep learning architectures are particularly vulnerable to adversarial examples, inputs to machine learning mode...

متن کامل

Ensemble Adversarial Training: Attacks and Defenses

Machine learning models are vulnerable to adversarial examples, inputs maliciously perturbed to mislead the model. These inputs transfer between models, thus enabling black-box attacks against deployed models. Adversarial training increases robustness to attacks by injecting adversarial examples into training data. Surprisingly, we find that although adversarially trained models exhibit strong ...

متن کامل

Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach

The robustness of neural networks to adversarial examples has received great attention due to security implications. Despite various attack approaches to crafting visually imperceptible adversarial examples, little has been developed towards a comprehensive measure of robustness. In this paper, we provide a theoretical justification for converting robustness analysis into a local Lipschitz cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018